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ABSTRACT. In this paper, we examine the solution set to the coupled system
{ —=(p1(x)'(x)) + qu(x)u(x) = Au(x) + u(x) - f(u(x),v(x))

—(p2(x)V (X)) + ga(x)v(x) = p(x) + v(x) « glu(x),v(x)),

where A, u € R, x € [a,b], and the system () is subject to zero Dirichlet
boundary data on # and v. We determine conditions on f and g which
permit us to assert the existence of continua of solutions to (+) characterized by
u having n—1 simple zeros in (a,b),v having m— 1 simple zeros in (a,b),
where n and m are positive but not necessarily equal integers. Moreover, we
also determine conditions under which these continua link solutions to (*) of
the form (4,4, u,0) with « having n — 1 simple zeros in {a,b) to solutions
of (+) of the form (4,4,0,v) with v having m — 1 simple zeros in (a,b).

.

(*)

1. INTRODUCTION

In a previous paper [3], we established a theorem which gives sufficient con-
ditions for higher global bifurcation in certain several-parameter systems of
nonlinear eigenvalue problems. The systems we considered had the particular
form

(L) Ay = A+ filug, ..ou,),

i=1,2, ..., n.Foreach ie{l,2,...,n}, u,€E,a commutative real
Banach algebra, while for some subspace D of E, 4,: D — E is an invertible
linear operator with compact inverse AI._1 .

In this paper, we examine a special case of (1.1). Namely we consider the
system

-(p1u')' +qu=Au+u-f(u,v),
—(p0") +ayv = pv +v - g(u,v)
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on the bounded interval (a,b) subject to the boundary conditions u(a) =0 =
u(b), v(a) = 0 =v(b). (More general homogeneous boundary conditions will
not affect the validity of most of our results. However, we do need the same
boundary conditions on # and on v in order for (1.2) to be an example of
(1.1).)

We demonstrate that under reasonably general conditions on f and g for
any pair of nonnegative integers (n,m), there exist continua of componentwise
nontrivial solutions (#,v) to (1.2) where u has n simple zeros in (a,b) and
v has m simple zeros in (a,b). These continua arise as secondary bifurcations
as the parameters A and u are varied from solutions to (1.2) of the form (i, 0)
or (0,7) where # is a solution to

(1.3) —(p, )+ qu=2u+u-f(u,0),
‘  u@)=0=u),
with n simple zeros in (a,b) and ¥ is a solution to

~(pyv") + v = pv +v - g(0,v),
v(a)=0=1uv(b),
with m simple zeros in (a,b). Moreover, under additional hypotheses we
show that the (iz,0) and (0,%) solutions to (1.2) are linked together by the
continua whose existence we establish.
We should briefly note that this phenomenon has been observed in ([2], [5])
in the componentwise positive solutions to the system

(1.4)

—~Au =ufa — u — cv]
s in Q,
(1.5) —Av =v[d — eu — v]

u=0=v on 812,

where Q C RY is a smooth bounded domain. Indeed, it was work on (1.5)
which initially motivated [3]. The system (1.5) is a steady-state Lotka-Volterra
competition model with diffusion. Consequently, the bifurcation phenomenon
may be described physically as follows. If ¢ and e are fixed positive numbers,
componentwise positive solutions to (1.2) (the coexistent steady-states (u,v))
arise as secondary bifurcations from solutions with one positive component
and one trivial component (the so-called extinction states (#,0) and (0,v))
by varying the parameters a and ¢ . Moreover, the coexistence states form a
sheet linking the extinction states of the form (#,0) to the ones of the form
(0,v).

We should also note that the results of this paper are in sharp contrast to
the results of [4]. In [4], a pair of nonlinear Sturm-Liouville boundary value
problems which depend on two parameters 4 and g and which are coupled in
the linearization about (u,v) = (0,0) is demonstrated to possess continua of
componentwise nontrivial solutions where the components change nodal struc-
ture. The difference reflects the effects of the stronger coupling in the systems
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considered in [4]. It also serves as a reminder of the endless fascination that
coupled systems of nonlinear boundary problems of ordinary and partial differ-
ential equations provide.

Finally, we structure the remainder of this paper as follows. In Section 2, we
determine conditions on f and g which guarantee the existence of continua
of solutions to (1.2) whose first component has n — 1 simple zeros in (a,b)
and whose second component has m — 1 simple zeros in (a,b) for any choice
of (n,m) e (Z+)2. Then in Section 3, we give additional conditions on f
and g to have these continua link solutions to (1.2) where the first component
has n—1 simple zeros in (a,b) and the second component is identically zero
to solutions of (1.2) with the first component identically zero and the second
having m — 1 simple zeros in (a,b). We conclude in Section 4 with a specific
example which illustrates the results of Sections 2 and 3.

2. BACKGROUND AND MAIN RESULT

Let us recall the basic facts regarding nonlinear Sturm-Liouville boundary
value problems which will be of importance to our analysis. (For details, see, for
example, [6].) Let [a, b] be a closed bounded interval and let p,q: [a,b] = R
be functions with the properties that p € C l[a ,b] and p(x) >0 for x €[a,b]
and g € Cla,b]. Let A: R — R be a continuous function with the properties
that 4(0) = 0 "and that A(S) is a bounded set whenever S C R is a bounded
set. Then the nonlinear Sturm-Liouville boundary value problem

(2.1) ~@Y) +aqy=2y+y-h(y) onl(a,b),

(2.2) y(a)=0=y(b),
admits the following bifurcation theoretic description. Namely, there is a se-
gquence
Ay <Ay <Ay <o <A, — +00
of simple eigenvalues to the problem

(2.3) —ZY +qz=2z on (a,b),

(2.4) z(a) = 0= z(b),

such that for each #n, there is an unbounded continuum %n in Rx{y e
Cl[a,b]: y(a) = 0= y(b)} of solutions to (2.1)~(2.2) such that (1,,0) € & .
Moreover, the continuum %, may be written as % = ZI‘LU%— , where ‘z;’f . €
are unbounded subcontinua of &, with the property that ?ﬁf ne ={(4,,0)}.
Furthermore, if (1,y) € €, (%, ) and (1,¥) # (4,,0), y #0, y has exactly
n — 1 simple zeros in (a,b) with y'(a) > 0(3'(a) < 0) and (=1)"y'(b) >
0((—~1)"y'(b) < 0). This last fact is a consequence of the uniqueness of initial
value problems for (2.1) and the openness in {y & Cl[a ,bl: v(a) =0 = y(b)}
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of the sets S, S, , where S' = {y € C'[a,]: y(a) = 0 = y(b), y has
exactly n — 1 simple zeros in (a,b), y'(a) > 0, and (-=D"Y'(b) > 0} and
S, ={re Cl[a,b]: y(@) = 0 = y(b), y has exactly n— 1 simple zeros in
(a,b), ¥'(a) <0, and (-1)"y'(b) < 0}.

We wish to apply Theorem 2.1 of [3] to the situation of (1.2). Using the
preceding exposition, in the context of (1.2) the result may be stated as follows:

Theorem 2.1. Suppose f,g:R> — R are twice continuously differentiable,
f(0,0) = 0 = g(0,0), and that J(E) and g(E) are bounded sets in R Jor
any bounded set E C R*. Let (A9>uy) be a solution to (1.3) such that Ay # 0,
(Ag-uy) # (4,,0), (A9,uy) € B, and such that the boundary value problem

I o .
(2.5) ~(7,7) +.‘an’=ﬂoZ+f(u0,0)Z+uO-éi;(uo,O)z in (a,b),

z(a) = 0= z(b),
has only the solution z = 0. Then there is an open interval V about A
and a unique continuous map u:V — {y € Cl[a,b]: ya = 0 = y(b)}

such that u(l,) = Uy, u(d) 0, and (A,u(d) e %, (relative to (1.3)). Let
W ={(A,u(d)): A€ V}. Suppose in addition that Uy € R s such that

(2.6) ~(0,w') + 10, ~ 8(up, Ol = pgw  in (a,b),
' w(a) =0=w(b),

has a solution w # 0 with m — 1 simple zeros in (a,b). Then there is a
continuum % in R* x {y € C'a, bl:y(a)=0= y(b)})2 of solutions to (1.2)
which has dimension greater than or equal to 2 (see [1]) at every point. Moreover,
ENWxRx{0})# D, and if W xR x {0} is viewed as the known or “trivial”
sheet of solutions to (1.2), & is global with respect to this sheet in the Cech
cohomological sense of [1]. Furthermore, there is q neighborhood Vo of 4y in
V' such that if A e Vy Is fixed, there is a u(l) € R such that the corresponding
restriction €, of & meets W x R x {0} at (A, u(A),u(A),0) and satisfies the
global bifurcation alternatives of Rabinowitz with respect to (4,u(A)) x R x {0}.
In particular, (4, My, Uy, 0) is such a point, and p(d) — Uy as A— A,.

Several observations are in order at this point. First of all, if (A,u,u, v) €
&, (A, u,u,v) ¢ WxRx {0} and (4,u,u,v) is sufficiently close in R* x
{y e Cl[a,b]: ya =0= y(b)})2 to (Ay,4y,4,,0) then u has n—1 sim-
ple zeros in (a,b) and v has m — 1 simple zeros in (a,b). More specif-
ically, u € S: (S,) if uy e S;’ (S, ). However, v may be in either S* or

m
S,, . In fact, for 1 fixed sufficiently near 4, and & > 0 sufficiently small,
& N B((4,u(),u(A),0);¢e) may be expressed as %f U %, where %;' B
are continua such that " N'%, = {(4, u(A), u(A) ,0)} and if (A, p,u,v) €

E?;(%_) , UE S,‘;(S,;). (Here B((4,1(4),u(1),0);¢) is the ball of radius ¢ -

about (4, u(4),u(2),0) in {1} xR x {ye Cl[a,b]: yia)=0= y(b)})z.) That
such is the case follows readily from the fact that U, is simple and that f
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and g are smooth enough to apply the local bifurcation theory of Cr'andall and
Rabinowitz [8] to this situation. (See also, for examplg, [5,'Sec‘uon 3] and
[1, Theorem 3.12]). Secondly, the structure of the eq.uatlons ml system (1.2),
uniqueness of initial value problems, and the opennessin {y € C'[a, b]f y(a)' =
0=y(b)} of S,':“ and S* guarantee that the nodal structure of (#,v) is main-

n . A
tained as one moves along % until ¥ or v becomes 0. Thirdly, since for any

Uy

—(,w') +1g,— gy, 0w =pw  in(a,b),

w(a) =0=w(b),
has an increasing sequence of simple eigenvalues u; < g, < --- gnd a corre-
sponding sequence of eigenfunctions w, ,w,, ..., where w ; has j—1 simple

zeros in (a,b), condition (2.6) can always be met. Conss:qu.enﬂy, Theorem 2.1
may be invoked so long as the existence of a (4,,u,) satisfying (2.5) can be es-
tablished. The heart of this section is to find conditions on f to guarantee such.
Finally, we should note that there is an analogous formulation of Theorem 2.1

requiring that

og
—(pzz")l + ¢,z = pyz + g(0,v,)z + voH(O, Uy)Z, in (a,b),
z(a) = 0= z(b),
have only the trivial solution. -
We now turn to the task of determining conditions on f Wh‘IC.h guarar}tee
that (1.3) has solutions (4,,u%,) for which (2.5) has only the trivial solution.

First of all, observe that the Crandall-Rabinowitz local bifurcation. theory [8]
implies that &, (with respect to (1.3)) in a neighborhood of (4,,0) (in Rx{y €

n

Cl[a,b]: y(a) = 0= y(b)}) may be expressed as
{@A@®),u(n): te(=96,0)}

where (A(b) ,#(0)) = (4,,0). Moreover, A(f),u(t) are smooth functions of ¢
with derivatives 4(¢),u,(t) satisfying

af
~(p,u:)' +qu, =Au+Au, + f(u,0)u, + u-a—;(u, O)u,,
ua)=0=u/b).

Suppose now for some (A(¢),u(t)) there is a w # 0 satisfying (2.5). An inte-
gration by parts argument shows us that

b
(2.7) A,(t) / u(t)(x)w(x)dx = 0.
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We may assume that ||w|| = I', where

[l | denotes the usnal i :
Let us assume that we have 1 — 0, ¢ e satns
>0

* , 7 0 and w, with lw,l| =1 satisfying
v_(plwn) + 4, wn = l(t”)'wn + f(u(ln) ’ O)wn

d
+u(t,)- gg(u(t,-l) 0w, in (a,b),

w,(a)=0= w,(b).

Since u(t,) — 0 and At,) — A, as n — oo
compactness argument that a subs ’
flwll=1 and w solves

it follows from (2.8) and a
equence w, of w, converges to w, where

~pw) +qw=2w in(a,b)
. w(a) =0=w(b).
A similar argument shows that a subsequénce u(t
converges to w or —w. Consequently,

b . B
Jim / (u(t”il_ lutz,, licx)) w, (9)dx = /bwz(x) dx #0.

SO b . PR .

/; u(tnij)(x)w”il_ (x)dx # 0 if j is sufficiently large, since lu(z, )| is a
nonzero constant. Now we see from s
w”‘_j of (2.8) only if

(2.9)

w e, DI of u(s, )/u, )|

(2.7) that we can have a nontrivial solution

32, ) =0

(i;oiv ailh jl sufficiently large. Asa consequence, so long as there is a sequence [ —
o 31 ] I(tn_) # 0 forall n, there are infinitely many solutions (}1(1 ), ult )SI of
.3) for which (2.5) has only the trivial solution. Any such solutign’ma; play

the role of (4,,u,) in Th i
0> Uy eorem 2.1. We have established th i
on the range of applicability of Theorem 2.1. ) ¢ following result

;::;r;l?( z.z.o )C"onsz.der (1.3). Swl?pose that f is such that there is not g neighbor-
o Bl ["I , ’Sg)ﬂ in Rx{u G.C [c{, bi: u(g) =0=u(b)} with the property that

projection of 2NB((2,,0);¢)) into R is {A,}. Then there is a (Ag,u &
50 that (2.5) has only the trivigl solution. Moreo’lier, fu <p<-- c(}, i~ hn
sequencei of eigenvalues to (2.6), there is a continuum l%’" oj’so[ut' S 1o (12
as described in Theorem 2.1 emanating from (Ag>m, 1, ,0) oo 12

We should make some comments once
panion result to Theorem 2.2 which
(1.4) in place of (1.3). In addition, i

.at this point. Once again, there is a com-
tIs Itlexplrct;s;ed in terms of the solution set to
: should be noted that th icti
I(](]);nf)isc;r; tbe;escglb.ed in terms of bifurcation diagrams. Na;reiiltriﬁzigq?ﬁre{
o o, Telative to (1.3) (or (1.4)) does not emanate “vertically” from
. )‘ (or (©,,0)). Consequently, Theorem 2.2 allows us to treat a great
many interesting examples in (1.2). For instance, if Sf(u,0) o

_ 2
where « # 0, Theorem 2.2 applies Honce, e el

for any choice of n e 7+ . Hence, we get
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continua of solutions (u,v) to (1.2) where u has n— 1 simple zeros in (a,b)
and v has m — 1 simple zeros in (a,b) for any choice of (n,m) € (Z+)2.
However, Theorem 2.2 does not apply to a situation where both f(u,0) and
g(0,v) are identically zero. For example, our analysis does not treat

—u" = Au—uv in (0,1),
" = wv +uw in (0, 1),
u(0) = 0= u(1),
v(0) = 0 =v(1).

3. LINKING PHENOMENA _
If both & relative to (1.3) and % relative to (1.4) satisfy the hypotheses of

Theorem 2.5, there is a continuum (’)nf nontrivial solutions (#,v) to (1.2) with
u having n — 1 simple zeros and v having m — 1 simple zeros arising from
solutions to {1.2) having the form (u,0), and, in addition, one arising from
solutions to (1.2) having the form (0,v). It is natural to ask if these continua
are linked together. Certainly, some linking in a neighborhood of (4, ,4,, ,0,0)
could be expected. However, the question we wish to address in this section is
one that can give global as well as local information about the continua. Namely,
suppose (4,,%,) € €, with u, # 0 so that (2.5) has only the trivial solution
and that u, is the mth eigenvalue of (2.6). Suppose also that we restrict
A = A, and follow the continuum of solutions to (1.2) %0 emanating from
(Ag» i, »1y»0) in {4} x Rx ({y € C'[a,b]: y(a) = 0 = y(b)})*. We know
from Section 2 that the solutions to (1.2) which emanate from (4,, &, ,%,,0)
have n — 1 simple zeros in (a,b) for u and m — 1 simple zeros in (a,b)
for v. Moreover, we know that this nodal structure is maintained until u« or
v becomes zero. The question we wish to address is: does the continuum ‘éﬁo
contain a solution to (1.2) of the form (4,,x,0,v) with v #0?

We know from Theorem 2.2 that either %lo is unbounded or there is (4,4,
U,,0) € %G with 7 # u, . (It is important to note that (4,,%,0,v) and
(Ag.u,u",0), u" # u,, are not “trivial solutions” in this setting. See the
proof of [3, Theorem 2.1].) Moreover, we know from preservation of nodal
structure that (4,,7,4,,0) may not be a limit point in %}-o of solutions to
(1.2) of (n,m) nodal type. However, to answer the question 1n the affirmative
we still need more information on E;‘io. The two principal additional pieces
of information that we need are that %0 cannot become unbounded unless u
becomes unbounded and that if u does become unbounded, not both u and
v can be nonzero.

We must now determine conditions on f and g which enable us to provide
this additional information on %;_0 . We begin with the following lemma.

Lemma 3.1. Let q,, g, > 0. Suppose that there are continuous functions h,
k:R —[0,00) so that
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(1) lal > h(A) implies A+ fla,b) ; 0 forall beR:

(ii) 0] > k() impi;
plies ﬂ+g(a,b)§O]brall a€R.

3.?, then there is a continuous
) is any solution of (1.2), then

leeleg + l1 Nl + Jlo)_ + 'l < M2, ).

Consequen
quently, %O can become unbound

We now need to know that if

ed only as » becomes unbounded,
then either » = ( of v=0.T

X becomes unbounded and (/10 MU V)ER

on (12) that | o this end, we make the additional assumptiojﬁs’
(3.1) '
(3.2) fla,b)<o0

g(a,b) < O} for all (a,b) e R>.
We have the following lemma,

Lemma 3.2, ¢ the conditions of Lemma 3.1

(3.2) hold. For ; — ; obtain. Suppo,
ri=haleay, A5 ..., denote the eigenval[z){eieo;Zz “ ) and
~) Y qw=w iy (a,b)
w(a)=0= w(b).

Suppose there is a conti
implies
(3.3)

Jor all (a,b) € R? wizp, [
a solution of (1.2) where
V#0, v has at leqst ns
Proof. Let (/{,ﬂ,u,v) b
0, (3.2) and the Sturm
Conditions (3.1), (3.3), a

nuou. { : A ‘
S function ¢ [4,00) =0, o) such that u > ()

A+ fla,b) <HU+gla,b)

al < h(2) and |p| < k(u).
y has n — 1 Simple zeros in
imple zeros in (a,b).

€ a solution to (1 2) as i

: . above. Since y
Comparison Theorem imply 3 > ;! andi5 Y f
nd Lemma 3.1 imply that - 24

I8 a strict Sturm majorant of Hrsten - -

Then z'f(/l,,u,u,’u) is
(@.8),1 > 9(2), and

We may now prove the following result.

. But now ﬁ ?é lum 3 Since “(’10 3ﬁsﬂ,®—) - (;{O’:um 2 uO’O)”(?fl[a’b’])z’XR’ Z 5 > 'O'.
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Theorem 3.4. Suppose that the conditions of Lemma 3.1 and Lemma 3.2 are
met. Suppose that (A,,u,) € €, with uy # 0 and A, # A, so that (2.5)
has only the trivial solution and that p, is the mth eigenvalue of (2.6), where
m < n. Let %Ao denote the continuum of solutions to (1.2) emanating from
(Ags ke, Uy, 0) in {A}xRx({y € C'la,b]: y(a) =0 = y(b)})z, whose existence
is guaranteed by Theorem 2.2. Suppose also that if u is any solution to (1.3) with
A =2, and having n—1 simple zeros in (a,b), then u = uy or u'(a)-uy(a) < 0.
Then there is a T with m — 1 simple zeros in (a,b) and T e [/1,2,1 »0(A)] s0
that (4,,%,0,0)C %, .

Proof. Let N = {(u,v) € ({Cl[a,b]: y(a)=0 =y(b)})2: u has n— 1 simple
zeros in (a,b), u'(a)-uy(a) >0, u'(b)-uy(b) >0, v has m— 1 simple zeros
in (a,b), and v'(a)-v'(b) # 0} andlet # = {1} x Rx N. For & >0, let
TE = {(Ao:uau’v) € g}.o: {i(lo,u,u,v) - (/10,#,,, :uoao)”(’gl[a,b])le{ = 8} It
follows from Theorem 2.2 that 7, C # for all ¢ > 0 and sufficiently small.

We first show that there is an ¢, > 0 so that Te0 ¢ /. Suppose to the
contrary that T, € # for all ¢ > 0. Then Theorem 2.2 implies that T, # @
for all ¢ > 0. (If not, there is (4,,4",%y,0) € %, with w # p,, and
consequently, (4,,4,u,v) € E;”AO with v having k — 1 simple zeros in (a,b),
k # m, a contradiction.) Corollary 3.3 and the proof of Lemma 3.2 guarantee
that if (A,,u,u,v) € %D N, then u € [Af’n ,9(45)1. It now follows from
Lemma 3.1 that there is a C > 0 so that (4,,u,u,v) € %)_0 Nn.# implies
(Ao s, u,v) — (/10,,um,uo,0)[[6,,4,{‘1’1)])3)(R <C. But‘then T.=0ife>C,a
contradiction.

So there is an ¢; > 0 with TE0 \ /" # @&. Hence there is (,,%,%,7V) €
%0 with the property that there is a sequence {(4, 4, , Y, ,v,\_)}f’:l € %o ﬂ/V
converging to (4,,%,%,7) while (#,7) € ON and |(4,,%,%,7) — (o>t s
LtO,O)ll(?f,[aJ)])ZXR > 6 > 0. Hence either # = 0 or 7 = 0. Suppose U =
0. Then # # 0 since 4, # 4,. So % has n — 1 simple zeros in (a,b),
7 (a)-ug(a) > 0, and 7 (b)-uy(b) > 0, since (4),%,%,7) € B, . Hence L =1,.

Since v, has m — 1 simple zeros in (a,b) for all k € Z*, this last i,S;Il’Ot
possible. So T# 0 and 7 = 0. By the Sturm Comparison Theorem, Z 2A .
If 1> ¢(y), there is (A, 4, , 1, ,v,) € &, with u, having n—1 simple zeros
in (a,b) and v, having m — 1 simple zeros in (a,b) while g > p(4g),

contradiction to Corollary 3.3. So & € [Ai > 0(4)] -

rein the roles of

There is of course an analogous result to Theorem 3.4 whe e b
nequalities in

the first and second equations in (1.2) are reversed provided t'h.e ;
(3.1) are also reversed. Moreover, we should note that condition (3.2) can be

weakened to fla,b) <K
gla,b) <K

} for all (a,b) €R’

2
where K > 0 provided that in Theorem 3.4, L € (4, — K ’Q(AO)]
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4. AN EXAMPLE
Consider the system

~u" =qu ~ (auz + ﬁvz)u

(4.1) } , i in (a,b),
—U =uv - (yu + v v
u(a) =u(b) = 0 = v(a) = v(b),

where a, B, y, & are positive constants. It is evident that (4.1) is a special

case of (1.2) with f(u,v) = —(as’ + o) and 8(u,v) = —(yu* + 6v?) . Note
that (1.3) and (1.4) in this setting are

(4.2) o ~u" = u - ai® in (a,b),
u(@) =0 = u(b),

and

(4.3) 0" =m =00’ in(a,h),

v(a) =0 =v(b),

respectively. It follows from the Sturm Comparison Theorem that solutions to

(4.2) (or (4.3)) with n — 1 simple zeros satisfy 1 > g, (or u> g,), where
0, <0, <0;--- are the eigenvalues of

(4.4) ~w" = gw in (a,b),
' w(a) = 0=w().

Consequently, f and & satisfy the hypotheses of Theorem 2.2. Thus there are
continua of solutions {1, u, u,v) to (4.1) with u having n — 1 simple zeros
in (a,b) and v having m — 1 simple zeros in (a,b) which emanate from
solutions to (4.1) of the form (A,u4,u,0), where u has n — | simple zeros
in (a,b) and (,u) satisfies (4.2) and from solutions to (4.1) of the form
(A4,14,0,v), where v has m — 1 simple zeros in (a,b) and (u,v) satisfies
(4.3).

We aim to show that linking as in Section 3 occurs for (4.1). Observe that
Lemma 3.1 holds with 4 and % given by

0, i<o,

-, A>0

a 2

0, ux<o,
k(ﬂ)z{

\/E, u>0.

It is also evident that equality obtains in (3.1) and that (3.2) holds.

and
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Now let 1> a,, 1> o,, lal < \/A/a, and || < V/1/8 . Suppose that in
= Uy Z
addition B < 26. Then |f—4|/d <1. So

2+12 lﬂ——fﬂ) >+ D) amu-Sa> 22+ 5—u
.LL>_'—TF:5T'1:>(1— 5 H ( a) o
R
But now 5
A-od (B -8 <A+ad +]f~5lb
-0
32/1+|—li3—"l#

_ZHi ) impli —ya® > A—oad -
and u—-yaz >u— gl, By (4.5), u > l_f_}%ﬂl 1mphes u—ya >
(B—-0 )b* , which is equivalent to
p+gla,b)> A+ f(a,b)

for |a] < /A, |b| < /u/d. Henceif f < 26, (3.3) is met by |
) ' 241

=

If y<2a,wegeta companion result for y with

2+ %
B
T+

=

pu) =

As a consequence, Theorem 3.4 implies that the con}’:mua cieslcr;?;cll) ;b;);/re;lsu;l;
solutions to (4.1) of the form (4, u,u,0) where uw }?esrenv LSl e
(a,b) to solutions of (4.1) of the form (4, u ,O,v+) JheTe b e oo

ros in (a,b) for any choice of (n,m) € (Z™)" provic e
fl::/pothesis of Theorem 3.4 is met for (4.2) and (4.3). It su

. . i

Mézﬁce there are no solutions to (4.2) having n — 1 simple zeros‘ 1; (:lo, l(?i 21)

= nd since |ju|| < /% for any solution, the only solutio )

. ” e a1 imple zer:)x; in (a,b) for A sufficiently near o, are jchose fn o
g;t?hen&anc?:li%abinowitz theorem [8]. We know that these solutions ¢

expressed as (A(z),u(t)) with
(4.6) u(t) = t(w +r(1))-

Here w satisfies

.-'w" =0,W in (a ab)
w(a) =0=w(b)

=1.w n {w} in
B ile r ies in a complement of spa {
w'(a) > 0 and f:w’dx 1, while r(¢) liesina e dsiioaitont ot
re Cl[a b];y(a) = 0= y(b)} and r(0) =0. Moreover, the derivatives o A
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